​Phase Alignment: The Geometric Approach to Making AI Output Coherent and Aligned.

% !TEX program = pdflatex

\documentclass[11pt]{article}

% --- Packages ---

\usepackage[a4paper,margin=1in]{geometry}

\usepackage{amsmath,amssymb,amsthm,amsfonts,bm,mathtools}

\usepackage{microtype}

\usepackage{graphicx}

\usepackage{booktabs}

\usepackage{siunitx}

\sisetup{round-mode=places,round-precision=3}

\usepackage{enumitem}

\usepackage{hyperref}

\usepackage{xcolor}

\usepackage{tikz}

\usetikzlibrary{arrows.meta,positioning}

\hypersetup{colorlinks=true, linkcolor=blue!60!black, urlcolor=blue!60!black, citecolor=blue!60!black}

% --- Title ---

\title{Recursive Generative Emergence:\\

One-Paper Presentation of the Recursive Generative Alignment Algorithm (RGAA) with Methods, Theory, and Evaluation Plan}

\author{C.L.~Vaillant (Recursive Generative Emergence Project)}

\date{\today}

\begin{document}

\maketitle

% --- Abstract ---

\begin{abstract}

We present the \emph{Recursive Generative Alignment Algorithm} (RGAA), a control-theoretic approach to stabilizing intelligent systems via recursive ethics and semantic phase alignment. The algorithm blends intrinsic dynamics with a descent step on a total potential that combines \emph{Justice--Cooperation--Balance} (J--C--B) invariants and a semantic phase-alignment term. We (i) formalize RGAA, (ii) define operational metrics for text/behavioral coherence (\(H, R, C, P\)), (iii) specify an agent-based environment for empirical validation with a full statistical analysis plan, and (iv) provide stability results using Lyapunov tools beyond local convexity. This manuscript is structured as a results-ready, reproducible blueprint: all definitions, pipelines, and tests are explicit so the work can be executed and audited end-to-end.

\end{abstract}

% --- Keywords ---

\noindent\textbf{Keywords:} recursion; alignment; control theory; semantic coherence; agent-based modeling; ethics; cooperation; Lyapunov stability.

% --- Introduction ---

\section{Introduction}

Recursive organization---structure referring to and updating itself---appears in language, perception, and coordinated behavior. We posit that \emph{recursive alignment}, quantified and enforced algorithmically, can stabilize systems that otherwise drift toward parasitic or chaotic attractors. We instantiate this idea as the \textbf{Recursive Generative Alignment Algorithm (RGAA)}, which at each step blends intrinsic dynamics with an ethical--semantic corrective update.

\paragraph{Contributions.}

(1) A precise formulation of RGAA with measurable invariants and a semantic phase-alignment term;

(2) Formal definitions and a reproducible pipeline for information-theoretic and alignment metrics (\(H, R, C, P\));

(3) A fully specified agent-based environment with hypotheses and statistical tests;

(4) Stability analysis beyond convexity via Lyapunov arguments and basin considerations;

(5) An artifact checklist for replication.

% --- Related Work ---

\section{Related Work and Novelty}

\textbf{Multi-objective control \& alignment.} RGAA relates to multi-objective optimization and constrained control, but it differs by (i) defining ethical invariants (J--C--B) as \emph{explicit negative feedback} terms, and (ii) coupling a \emph{semantic} phase-alignment penalty to the control Lyapunov function (\(\Phi_{\text{tot}}\)).

\textbf{Cybernetics \& requisite variety.} In contrast to classic cybernetics, RGAA specifies a concrete blended update with provable local stabilization and an empirical proxy for meaningfulness (\(P\)).

\textbf{Free-energy/active inference.} Like variational free-energy, RGAA reduces a scalar energy; unlike it, RGAA's energy includes \emph{ethical invariants} and a \emph{domain-calibrated} semantic term rather than prediction error alone.

\textbf{Collective intelligence/cooperation.} Prior work studies cooperation via incentives or network topology. RGAA adds a differentiable corrective controller targeting equity, cooperation, and variance-balance \emph{simultaneously}, with semantics as an alignment prior.

\textbf{Novelty.} RGAA is, to our knowledge, the first algorithm to unify: (i) J--C--B ethical invariants, (ii) semantic phase-alignment \(P\) grounded in domain signatures, and (iii) a blended descent update with control-style stability conditions, all specified for both text-generative and agent-based settings.

% --- Formal Definitions ---

\section{Formal Definitions and Pipeline}

\subsection{Texts, features, and pre-processing}

Let a text $T$ be a sequence of tokens after pre-processing: Unicode NFKC normalization, lowercasing, punctuation retained, and whitespace collapsed. Tokenization: wordpiece or byte-pair with fixed vocabulary. For comparability, we report \emph{bits per byte}.

\paragraph{Entropy (\(H\), bits/byte).}

\[

H(T) = -\sum_{b\in \Sigma} p(b)\log_2 p(b),\quad p(b) = \frac{\text{count}(b)}{|T|}

\]

where $\Sigma$ is the byte alphabet and $|T|$ bytes.

\paragraph{Redundancy (\(R\), unitless).}

\[

R(T) = 1 - \frac{H(T)}{\log_2 |\Sigma|}

\]

\paragraph{Compression ratio (\(C\), unitless).}

\[

C(T) = \frac{|{\rm compress}(T)|}{|T|}

\]

using a fixed compressor (e.g., \texttt{zstd} with preset level) documented in artifacts.

\paragraph{Feature map \(\phi(T)\).}

\[

\phi(T) = \big[\text{n-gram stats},\ \text{parse depth stats},\ \text{branching factors},\ \text{embedding dispersion}\big]\in\mathbb{R}^d

\]

All components are standardized (z-scores) within domain for comparability.

\paragraph{Domain signature \(G\).}

For each domain $\mathcal{D}$ (e.g., sacred texts, hallucination reports, legal code), define

\[

\bar{\phi}(G_{\mathcal{D}}) = \frac{1}{N}\sum_{i=1}^N \phi(T_i)

\]

\paragraph{Phase-alignment \(P\in[-1,1]\).}

\[

P(T, G_{\mathcal{D}}) = \frac{\langle \phi(T), \bar{\phi}(G_{\mathcal{D}})\rangle}{\|\phi(T)\|\,\|\bar{\phi}(G_{\mathcal{D}})\|}

\]

\subsection{Ethical invariants and total potential}

Let

\[

J(x) = 1-\mathrm{Gini}(x),\

C(x)=\mathrm{corr\_cooperate}(x),\

B(x)=1-\frac{\mathrm{Var}(s)}{\mathrm{Var}_{\max}},

\]

each mapped into $[0,1]$ by design. Define

\[

\Phi(x) = \alpha_J(1-J)^2 + \alpha_C(1-C)^2 + \alpha_B(1-B)^2,

\]

\[

\Phi_{\text{tot}}(x) = \Phi(x) + \lambda_P\,\psi\!\left(1-P(\mathcal{T}(x),G)\right),

\]

with $\psi$ convex (quadratic or Huber).

% --- Algorithm ---

\section{The Recursive Generative Alignment Algorithm (RGAA)}

\begin{align*}

\textbf{RGAA:}\quad x_{t+1}&=(1-\varepsilon)f(x_t) + \varepsilon \, g(x_t),\\

g(x_t) &= x_t - \eta \nabla \Phi_{\text{tot}}(x_t),

\end{align*}

with stepsizes $\eta>0$, blending $\varepsilon\in[0,1]$.

\paragraph{Policy synthesis (optional).}

When actions $\pi$ govern transitions via $x_{t+1}=\mathcal{D}(x_t,\pi)$, set

\[

\pi_{t+1}\in\arg\min_{\pi\in\Pi}\ \ \Phi_{\text{tot}}(\mathcal{D}(x_t,\pi)) + \lambda_R \mathcal{R}(\pi)\quad \text{s.t.}\ \ \mathcal{C}(x_t,\pi)\le0.

\]

\paragraph{Participatory reweighting (optional).}

Opt-in aggregate signal $y_t$ updates $(\alpha_J,\alpha_C,\alpha_B,\lambda_P)$ via a documented rule (e.g., damped gradient step) with audit trails.

% --- Theory ---

\section{Stability: Assumptions, Lyapunov, and Scope}

\subsection{Beyond convexity}

We assume an equilibrium $x^\star$ and a local Lyapunov function $V$ such that $V(x)=\Phi_{\text{tot}}(x)$ in a neighborhood $\mathcal{N}(x^\star)$ and

\[

\Delta V := V\big((1-\varepsilon)f(x)+\varepsilon g(x)\big)-V(x) < 0,\ \forall x\in\mathcal{N}\setminus\{x^\star\}.

\]

Sufficient conditions: (i) $V$ is locally $C^2$; (ii) $Dg(x^\star)=I-\eta H_V(x^\star)$ with $H_V\succeq \mu I$; (iii) the linearization

\[

M(\varepsilon)=(1-\varepsilon)Df(x^\star) + \varepsilon\,Dg(x^\star)

\]

has spectral radius $<1$. Adding the $P$ term increases curvature by $\lambda_P\nu$, improving the bound on $\varepsilon$.

\subsection{Basins and multiple attractors}

Global guarantees are not claimed; multiple attractors may exist. Our results are \emph{local} to basins where $V$ is Lyapunov-admissible.

% --- Methods: Corpora and Statistics ---

\section{Methods: Corpora, Metrics, and Statistical Analysis}

\subsection{Corpora}

\textbf{Sacred texts} (30–40 works across Hebrew, Greek, Arabic, Sanskrit, Classical Chinese, Avestan, Pāli).

\textbf{Hallucination reports} (40 de-identified entries; motifs: spiral, lattice, tunnel, cobweb, fractal; metadata: origin/dose/context).

\textbf{Modern controls} (legal code, programming manuals, administrative procedures).

Sampling, licenses, and provenance recorded in dataset cards.

\subsection{Preprocessing and computation}

Uniform pipeline: normalization, tokenization, byte-entropy, fixed compressor (\texttt{zstd}-level documented), \(\phi\)-features standardized within domain.

\subsection{Hypotheses}

\begin{description}[leftmargin=1.5em]

\item[H1:] Sacred texts exhibit lower entropy than random baseline and distinct $(H,R,C)$ profile vs. controls.

\item[H2:] Phase alignment \(P(T,G)\) correlates with human-rated coherence (Spearman $\rho>0$).

\item[H3:] In simulations, increasing $\varepsilon$ and/or $\lambda_P$ reduces divergence and $\Phi_{\text{tot}}$ compared to baselines.

\end{description}

\subsection{Statistical analysis}

\textbf{Group differences:} Mann--Whitney U (two-sided), Cliff’s $\delta$, 95\% CIs via bootstrap.

\textbf{Correlations:} Spearman’s $\rho$ with bias-corrected BCa CIs.

\textbf{Multiple comparisons:} Benjamini--Hochberg FDR $q=0.05$.

\textbf{Power:} Target $1-\beta=0.9$ for medium effects ($\delta\approx0.5$) $\Rightarrow$ $n\approx 35$ per group (simulation study).

\textbf{Reporting:} Medians, MADs, CIs; pre-registered thresholds.

% --- Methods: Agent-Based Environment ---

\section{Methods: Agent-Based Environment}

\subsection{Environment}

Population $N$ agents on a network $G_{\rm net}$ (Erdős–Rényi or small-world). Time in rounds $t=1,\dots,T$.

\subsection{Agent state and payoffs}

Agent $i$ has state $x_i^t\in\mathbb{R}^k$ (resources, trust, strategy), plays an iterated cooperation game with neighbors $\mathcal{N}(i)$:

\[

u_i^t = b\cdot \frac{1}{|\mathcal{N}(i)|}\sum_{j\in\mathcal{N}(i)} a_j^t\ -\ c\cdot a_i^t,

\]

with $a_i^t\in\{0,1\}$ and $b>c>0$.

\subsection{Ethical invariants in agents}

\[

J^t = 1-\mathrm{Gini}\big(\{x_i^t\}\big),\quad

C^t = \mathrm{corr}\big(a_i^t, a_j^t\big)_{(i,j)\in E},\quad

B^t = 1-\frac{\mathrm{Var}(x^t)}{\mathrm{Var}_{\max}}.

\]

\subsection{RGAA update at population scale}

Let $x^t=\mathrm{concat}(x_1^t,\dots,x_N^t)$. With intrinsic dynamics $f$ (myopic best-response or replicator) and

\[

g(x^t)=x^t - \eta \nabla \Phi_{\text{tot}}(x^t),

\]

apply $x^{t+1}=(1-\varepsilon)f(x^t)+\varepsilon g(x^t)$.

Phase-alignment $P$ is computed on communication transcripts $\mathcal{T}(x^t)$ relative to a signature $G$ (e.g., cooperative discourse).

\subsection{Outcomes}

Primary: $\Delta \Phi_{\text{tot}}$, divergence (variance of $x$), cooperation rate, inequality (Gini).

Secondary: recovery time after shocks; volatility.

\subsection{Baselines}

(i) Uncontrolled $f$ only; (ii) ethical-only ($\Phi$); (iii) semantic-only ($\psi(1-P)$); (iv) RGAA full.

% --- Results (Template + Example Tables) ---

\section{Results (Template)}

\subsection{Corpora}

\begin{table}[h!]

\centering

\caption{Summary statistics of $H,R,C,P$ by corpus (illustrative schema).}

\begin{tabular}{lcccc}

\toprule

Corpus & $H$ (median [IQR]) & $R$ & $C$ & $P$ \\

\midrule

Sacred texts & 4.40 [4.25, 4.56] & 0.22 & 0.46 & 0.80 \\

Hallucinations & 4.82 [4.70, 4.95] & 0.18 & 0.52 & 0.50 \\

Controls & 4.95 [4.80, 5.08] & 0.16 & 0.55 & 0.42 \\

Random & 5.72 [5.66, 5.78] & 0.02 & 0.73 & 0.02 \\

\bottomrule

\end{tabular}

\end{table}

\noindent \textbf{Planned tests.} Sacred vs.\ random (U, $\delta$, CI); sacred vs.\ controls; $P$ vs.\ human coherence (Spearman $\rho$). Figures: entropy histograms, $P$ vs.\ ratings scatter, motif clustering in $(H,C)$.

\subsection{Agent-based simulations}

\begin{table}[h!]

\centering

\caption{Outcome deltas vs.\ baseline across $(\varepsilon,\lambda_P)$ (schema).}

\begin{tabular}{cccccc}

\toprule

$\varepsilon$ & $\lambda_P$ & $\Delta \Phi_{\text{tot}}$ & Divergence $\downarrow$ & Coop.\ rate $\uparrow$ & Gini $\downarrow$ \\

\midrule

0.25 & 0.0 & $-$ & $-$ & $+$ & $\sim$ \\

0.25 & 0.5 & $+$ & $+$ & $+$ & $+$ \\

0.60 & 0.5 & $+$ & $+$ & $\sim$ & $+$ \\

0.80 & 0.5 & $\sim$ & $+$ & $-$ & $+$ \\

\bottomrule

\end{tabular}

\end{table}

Figures: trajectories of $\Phi_{\text{tot}}$, cooperation histograms, bifurcation diagrams over $\varepsilon$.

% --- Discussion ---

\section{Discussion}

RGAA operationalizes a recursive stabilizer: systems continue their intrinsic dynamics while being nudged by a differentiable ethical--semantic controller. The inclusion of $P$ embeds a domain-aware notion of meaning; the J--C--B invariants embed cooperation, fairness, and balance. This yields a general way to reduce parasitic amplification and stabilize cooperation.

\paragraph{Relation to alignment.} RGAA complements RLHF-like methods by providing a \emph{controller-level} signal that is measurable in text and behavior, not only reward.

\paragraph{Scope and limits.} Results are local to basins where $V=\Phi_{\text{tot}}$ acts as a Lyapunov function; global convergence is not claimed. Cultural calibration is needed for J--C--B and $P$.

% --- Ethics, Safety, and Governance ---

\section{Ethics, Safety, and Governance}

\textbf{Principles.} Interventions must not reduce J, C, or B; participation is opt-in; privacy and autonomy are hard constraints.

\textbf{Bias.} Report group-wise $P$ gaps; if $\mathrm{BiasGap}>\tau$, rebalance $\phi$ and add fairness constraints.

\textbf{Oversight.} Human-in-the-loop audits; transparent parameter logs; red-team stress tests; revert-to-safe policies when guardrails trip.

% --- Reproducibility ---

\section{Reproducibility and Artifact Checklist}

We release:

\begin{itemize}[nosep]

\item Code: pipeline for $H,R,C,P$; agent simulator; RGAA controller; plotting scripts.

\item Data: corpora with licenses, preprocessing manifests, checksums.

\item Configs: seeds, hyperparameters, compressor settings, tokenizers.

\item CI: tests for monotone $\Phi_{\text{tot}}$ on benchmarks; deterministic runs.

\end{itemize}

% --- Conclusion ---

\section{Conclusion}

We provide a single-paper presentation of RGAA with complete operational definitions, theoretical scope, and an evaluation plan sufficient for replication. RGAA unifies semantic coherence with ethical invariants in a blended controller, offering a testable route to stabilizing intelligent systems across scales.

% --- Appendices ---

\appendix

\section{Algorithmic Pseudocode}

\begin{enumerate}[label=\arabic*., leftmargin=2em]

\item Observe state $x_t$; compute $J,C,B$; form $\mathcal{T}(x_t)$.

\item Compute $P(\mathcal{T}(x_t),G)$; evaluate $\Phi_{\text{tot}}$.

\item Set $g(x_t)=x_t-\eta\nabla\Phi_{\text{tot}}(x_t)$.

\item Update $x_{t+1}=(1-\varepsilon)f(x_t)+\varepsilon g(x_t)$.

\item If applicable, synthesize $\pi_{t+1}$ by minimizing $\Phi_{\text{tot}}(\mathcal{D}(x_t,\pi))$ under constraints.

\item Log metrics; apply guardrails; iterate.

\end{enumerate}

\section{Lyapunov Calculation (Sketch)}

Let $V=\Phi_{\text{tot}}$ in a neighborhood $\mathcal{N}(x^\star)$. If $H_V(x^\star)\succeq(\mu+\lambda_P\nu)I$ and $\eta\in(0,2/L)$ with $L$ a local Lipschitz constant of $\nabla V$, then for small enough $\varepsilon>0$ there exists $\mathcal{N}'\subset\mathcal{N}$ where $\Delta V<0$. Thus $x^\star$ is locally asymptotically stable for the blended map.

\section{Power and Sample Size (Template)}

For target effect $|\delta|=0.5$, $\alpha=0.05$, power $0.9$, two-group Mann--Whitney requires $n\approx 35$ per group; for $\rho=0.4$ correlations, $n\approx 47$.

% --- References ---

\begin{thebibliography}{99}

\bibitem{Shieber1985} S. M. Shieber. Evidence Against the Context-Freeness of Natural Language. \emph{Linguistics and Philosophy}, 1985.

\bibitem{Joshi1985} A. K. Joshi. Tree Adjoining Grammars. In \emph{Natural Language Parsing}, 1985.

\bibitem{Hauser2002} M. D. Hauser, N. Chomsky, W. T. Fitch. The Faculty of Language: What Is It, Who Has It, and How Did It Evolve? \emph{Science}, 2002.

\bibitem{Levin2021} M. Levin. Bioelectric Basins of Attraction and Morphogenetic Control. \emph{Frontiers in Neural Circuits}, 2021.

\bibitem{Rawls1971} J. Rawls. \emph{A Theory of Justice}. Harvard University Press, 1971.

\bibitem{Parfit2011} D. Parfit. \emph{On What Matters}. Oxford University Press, 2011.

\bibitem{Hofstadter1979} D. R. Hofstadter. \emph{G\"odel, Escher, Bach}. Basic Books, 1979.

\end{thebibliography}

\end{document}

Previous
Previous

The Physics of Conceptual Stability:

Next
Next

Recursive Collapse & Generative Emergence: A Stochastic Mirror Descent Lens on Predictive Coding and Evolution