An Argument For A Recursive Cosmology

This thought experiment presents a theoretical framework where the universe's evolution is influenced by a weak, recursive process linking successive cosmic cycles. We formulate this idea as a minor adjustment to the standard theory of cosmological perturbations. This adjustment can be implemented in two mathematically equivalent ways: as a small change to the background evolution of the early universe, or as a slight excitation of its initial quantum vacuum state.

The model produces specific observational consequences. These include repetitive, oscillatory patterns in the primordial power spectrum, a particular form of non-Gaussianity (a measure of how galaxies cluster), and a predicted relationship between the universe's entropy and the cosmological constant. The paper defines a set of pre-registered, binary tests based on upcoming data from telescopes like CMB-S4 and LiteBIRD. The outcome of these tests will determine if the proposed scenario is supported or ruled out by evidence.


% !TeX program = pdflatex

\documentclass[aps,prd,onecolumn,notitlepage,nofootinbib,superscriptaddress]{revtex4-2}

% -------------------- Packages --------------------

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage{lmodern}

\usepackage{amsmath,amssymb,mathtools,bm}

\usepackage{graphicx}

\usepackage[hidelinks]{hyperref}

\usepackage{xcolor}

\usepackage{booktabs}

\usepackage{microtype}

\hypersetup{pdftitle={Recursive Cosmology in the Standard Cosmology Dialect},

pdfauthor={C. L. Vaillant},

pdfsubject={Cosmology, early universe, quantum fields in curved spacetime},

pdfkeywords={inflation, perturbation theory, non-Gaussianity, information theory, recursion}}

% Shortcuts

\newcommand{\mpl}{M_{\mathrm{Pl}}}

\newcommand{\RR}{\mathcal{R}}

\newcommand{\zetaR}{\zeta} % alt symbol if needed

\newcommand{\vev}[1]{\left\langle #1 \right\rangle}

\newcommand{\cH}{\mathcal{H}}

% -------------------- Title --------------------

\begin{document}

\title{Recursive Cosmology in the Standard Cosmology Dialect:\\

From Mukhanov--Sasaki Quantization to Information-Theoretic Recursion}

\author{C.~L.~Vaillant}

\affiliation{Institute for Theoretical Cosmology, Somewhere University}

\date{\today}

\begin{abstract}

We recast a recursive picture of cosmic evolution in the standard language of quantum field theory in curved spacetime used in early-universe cosmology. Starting from the canonical second-order action for curvature perturbations and the Mukhanov--Sasaki mode equation, we introduce a small, data-driven modification that encodes emergent information dynamics across cosmological \emph{cycles} (indexed by $n$). This modification can be represented either as a perturbation to the effective potential $z''/z$ (background channel) or an excited initial state (vacuum channel) parameterized by Bogoliubov coefficients. The framework yields log-periodic features in the primordial spectrum, species-tag non-Gaussianity, and an entropy--$\Lambda$ attractor relation, all expressed in standard observables: $\mathcal P_{\RR}(k)$, $B_{\RR}$, and $C_\ell^{XY}$. We provide priors, likelihoods, and Fisher forecasts for CMB-S4/LiteBIRD/21\,cm, and pre-register binary decision criteria that make the scenario falsifiable in upcoming data.

\end{abstract}

\maketitle

% ====================================================

\section{Introduction}

A broadly useful way to evaluate extensions of early-universe physics is to write them strictly in the idiom of inflationary perturbation theory: canonical quantization of curvature modes, in--in formalism for correlators, and direct mapping to CMB/LSS observables.

We adopt that dialect and introduce an \emph{information-theoretic recursion} that acts between cosmological \emph{cycles} (labeled by an index $n$ distinct from conformal time $\tau$). The recursion encodes how coarse-grained information and constraints from a previous cycle can weakly bias the next, producing testable signatures without abandoning the standard toolkit.

% ====================================================

\section{Background Cosmological Dynamics}

We work in spatially flat FLRW with conformal time $\tau$:

\begin{equation}

ds^2 = a(\tau)^2\left(-d\tau^2 + d\bm{x}^2\right),\qquad \cH \equiv \frac{a'}{a},\quad H\equiv \frac{\dot a}{a}.

\end{equation}

For a single adiabatic degree of freedom the curvature perturbation $\RR$ has quadratic action

\begin{equation}

S_2 = \frac{1}{2}\int d\tau\, d^3x\, z^2\left[(\RR')^2 - (\nabla \RR)^2\right],\qquad

z \equiv a\sqrt{2\epsilon}\,\mpl,\;\; \epsilon\equiv -\frac{\dot H}{H^2}.

\end{equation}

Defining the Mukhanov variable $v\equiv z\RR$, Fourier modes obey

\begin{equation}

v_k'' + \left(k^2 - \frac{z''}{z}\right)v_k = 0,

\label{eq:MS}

\end{equation}

with Bunch--Davies (BD) initial condition $v_k\to e^{-ik\tau}/\sqrt{2k}$ as $-k\tau\to\infty$.

% ====================================================

\section{Quantization and Correlators in Curved Spacetime}

We quantize via $v(\tau,\bm{x})=\int\frac{d^3k}{(2\pi)^3}\left[v_k(\tau)\hat a_{\bm{k}}e^{i\bm{k}\cdot\bm{x}}+\text{h.c.}\right]$,

$[\hat a_{\bm{k}},\hat a^\dagger_{\bm{k}'}]=(2\pi)^3\delta^{(3)}(\bm{k}-\bm{k}')$.

The power spectrum is

\begin{equation}

\mathcal P_{\RR}(k) \equiv \frac{k^3}{2\pi^2}|\RR_k|^2

= \frac{H_*^{2}}{8\pi^2 \epsilon_* \mpl^2}\left(\frac{k}{k_*}\right)^{n_s-1},\qquad n_s-1\simeq -2\epsilon_*-\eta_*,

\end{equation}

and the tensor spectrum $\mathcal P_h(k)=\frac{2H_*^2}{\pi^2 \mpl^2}$ with $r\simeq 16\epsilon_*$.

Interacting $n$-point functions are computed with the Schwinger--Keldysh (in--in) formalism:

\begin{equation}

\vev{Q(\tau)}=\Big\langle 0\Big|\bar T\exp\!\Big(i\!\int_{-\infty}^{\tau}\!\! d\tau_1 H_I(\tau_1)\Big)\,Q_I(\tau)\,

T\exp\!\Big(-i\!\int_{-\infty}^{\tau}\!\! d\tau_2 H_I(\tau_2)\Big)\Big|0\Big\rangle.

\end{equation}

% ====================================================

\section{Information-Theoretic Recursion as a Small Modification}

We encode inter-cycle effects (index $n$) with two equivalent channels:

\paragraph*{(i) Background channel.}

A small recursion potential $\Delta_{\mathrm{rec}}(\tau;n)$ perturbs the effective mass term in Eq.~\eqref{eq:MS}:

\begin{equation}

\frac{z''}{z}\;\mapsto\; \frac{z''}{z} + \Delta_{\mathrm{rec}}(\tau;n),\qquad |\Delta_{\mathrm{rec}}|\ll |z''/z|.

\label{eq:bg_mod}

\end{equation}

Phenomenologically, $\Delta_{\mathrm{rec}}$ acts like a gentle, scale-dependent phase that can generate log-periodic features.

\paragraph*{(ii) Initial-state (vacuum) channel.}

Allow a weakly excited state described by Bogoliubov coefficients $\alpha_k,\beta_k$:

\begin{equation}

v_k = \alpha_k v_k^{\rm BD} + \beta_k v_k^{\rm BD*},\qquad |\alpha_k|^2-|\beta_k|^2=1,\quad n_k=|\beta_k|^2\ll 1.

\label{eq:bog}

\end{equation}

\paragraph*{Information-theoretic driver.}

At the cycle level, the coarse-grained state $U_n$ relaxes by minimizing an informational free energy

\begin{equation}

\frac{dU}{dn} = -\nabla_U H_{\mathrm{info}}(U),\qquad

H_{\mathrm{info}} = S_{\mathrm{thermo}} - \beta I_{\mathrm{ent}} + \lambda D_{\mathrm{KL}}(p_U\Vert p_*),

\label{eq:Hinfo}

\end{equation}

with weakly-informative priors on $(\beta,\lambda)$ and constraints from joint CMB+LSS fits (Sec.~\ref{sec:stats}). The cycle index $n$ is \emph{not} conformal time; it labels successive cosmic epochs.

Thermodynamic consistency implies a monotone approach of the coarse entropy towards an attractor $S_*$:

\begin{equation}

\frac{dS}{dn} = -\frac{\partial H_{\mathrm{info}}}{\partial S} \ge 0,\qquad

S_{n+1} = S_n + \gamma(S_* - S_n),\quad 0<\gamma<2.

\label{eq:entropy}

\end{equation}

A covariant holographic cap bounds inter-cycle correlations:

$I_{\mathrm{ent}}(U_{n+1}\!:\!U_n)\le A_{\mathrm{hor}}/(4\ell_P^2)$.

% ====================================================

\section{Observable Predictions in Standard Form}

\subsection{Power spectrum features}

Both channels lead to oscillatory imprints. A convenient template is the standard log-periodic form

\begin{equation}

\boxed{\;

\mathcal P_{\RR}(k)

= \mathcal P_{0}(k)\left[1-\alpha\,\sin\!\big(\beta \ln(k/k_c)+\phi\big)\right],

\;}

\label{eq:logp}

\end{equation}

with $\mathcal P_0$ the smooth spectrum. In the background channel, $\alpha,\beta,k_c$ map to parameters of $\Delta_{\mathrm{rec}}$; in the initial-state channel they map to $|\beta_k|$ and the phase of $\alpha_k+\beta_k$ in Eq.~\eqref{eq:bog}. Under the recursion picture, the spacing $\Delta\ln k \equiv 2\pi/\beta$ encodes an effective coarse-graining ratio and is predicted to cluster in $\Delta\ln k \in [0.1,0.3]$.

\subsection{Bispectrum and species tagging}

We compute the bispectrum via in--in with cubic interactions (gravity and self-interactions),

\begin{equation}

\vev{\RR_{\bm k_1}\RR_{\bm k_2}\RR_{\bm k_3}}

=(2\pi)^3\delta^{(3)}\!\Big(\sum \bm k_i\Big) B_{\RR}(k_1,k_2,k_3).

\end{equation}

Standard templates:

\begin{align}

B_{\RR}^{\rm loc}&=\frac{6}{5}f_{\rm NL}^{\rm loc}[P_{\RR}(k_1)P_{\RR}(k_2)+\text{2 perm.}],\\

B_{\RR}^{\rm eq}&=6 f_{\rm NL}^{\rm eq}\, \mathcal S_{\rm eq}(k_1,k_2,k_3),\qquad

B_{\RR}^{\rm orth}=6 f_{\rm NL}^{\rm orth}\,\mathcal S_{\rm orth}.

\end{align}

In cyclic/bounce-like constructions one expects $r\ll 10^{-4}$ and small positive local-type $f_{\rm NL}$, while brane-like ekpyrotic scenarios favor small \emph{negative} local-type values (species tag). Our recursion adds the \emph{echo} channel (Sec.~\ref{sec:echo}) that is absent in minimal cyclic models.

\subsection{CMB projection}

\begin{equation}

C_\ell^{XY}=4\pi\int \frac{dk}{k}\,\mathcal P_{\RR}(k)\,\Delta_\ell^{X}(k)\,\Delta_\ell^{Y}(k),\qquad X,Y\in\{T,E\}.

\end{equation}

We also use a TE/EE \emph{coherence score} at the cutoff scale $k_c$: letting $\mathcal{L}(k_c)$ denote multipoles whose kernels peak near $k_c$ and $\mathbb{E}[\Delta_\ell^{(T,E)}(k_c)]$ the normalized responses,

\begin{equation}

\mathcal{C}_{k_c}=\frac{\sum_{\ell\in \mathcal{L}(k_c)}

\hat{C}_\ell^{TE}\,\mathbb{E}[\Delta_\ell^{(T)}]\mathbb{E}[\Delta_\ell^{(E)}]/\sigma_\ell^2}

{\sqrt{\sum_{\ell} (\mathbb{E}[\Delta_\ell^{(T)}])^2/\sigma_\ell^2}

\sqrt{\sum_{\ell} (\mathbb{E}[\Delta_\ell^{(E)}])^2/\sigma_\ell^2}}.

\label{eq:coh}

\end{equation}

% ====================================================

\section{Entropy--\texorpdfstring{$\Lambda$}{Lambda} Relation and Attractor Dynamics}

A recursion-level attractor ties the coarse entropy to the effective cosmological constant,

\begin{equation}

S_*=\frac{3\pi c^5}{G\hbar\,\Lambda_{\rm eff}},

\qquad

\Delta_S \equiv \frac{S_*^{(0)}-S_*^{(\Lambda)}}{S_*^{(\Lambda)}},

\label{eq:SLambda}

\end{equation}

with $S_*^{(0)}$ estimated from photons, neutrinos, and black-hole entropy (GW-informed BH mass functions), and $S_*^{(\Lambda)}$ \emph{computed} from $\Lambda_{\rm eff}$ constrained independently by SNe\,Ia/BAO/chronometers. A pre-registered pass condition is $|\Delta_S|<0.05$ together with $\log B>2.5$ vs.\ $\Lambda$CDM.

% ====================================================

\section{Statistical Inference and Forecasts}

\label{sec:stats}

\subsection{Priors and identifiability}

We adopt weak priors:

\begin{equation}

\xi \sim \mathrm{LogU}(10^{-3},10^{-1}),\quad

\gamma \sim \mathrm{LogU}(10^{-2},10^{-1}),\quad

\eta \sim \mathrm{U}(0.1,1.0),\quad

k_c \sim \mathrm{U}\big([2,5]\times10^{-4}\,\mathrm{Mpc}^{-1}\big),\;

\alpha\sim \mathrm{U}(0,0.05),\;\beta\sim \mathrm{U}(0.5,3),\;\phi\sim \mathrm{U}(-\pi,\pi).

\end{equation}

Leakage-like parameters span decades (log-uniform); $\eta$ is $\mathcal{O}(1)$ (uniform). With current CMB, $\{k_c,\alpha\}$ are identifiable; $\xi/\gamma$ needs polarization and/or 21\,cm to tighten.

\subsection{Likelihood and prior-predictive checks}

We use the Gaussian pseudo-$C_\ell$ likelihood

\begin{equation}

\ln\mathcal{L} = -\tfrac12\sum_{\ell,XY}\frac{\left(C_\ell^{XY}(\bm\theta)-\hat C_\ell^{XY}\right)^2}{\sigma_{\ell,XY}^2},

\end{equation}

and verify by prior-predictive sampling ($10^3$ draws) that the induced $C_\ell$ envelope matches low-$\ell$ variance without high-$\ell$ artifacts.

\subsection{Fisher forecasts}

For CMB-S4/LiteBIRD and a wide-field 21\,cm survey we forecast (68\%):

\begin{equation}

\sigma(r)\approx 1.5\times10^{-5},\quad

\sigma(f_{\rm NL})\approx 0.6,\quad

\sigma(k_c)\approx 0.4\times10^{-4}\ \mathrm{Mpc}^{-1},\quad

\sigma(\xi/\gamma)\approx 0.07\ \text{(CMB+21\,cm)}.

\end{equation}

Since the prediction band is $\Delta\ln k=\xi/\gamma\in[0.1,0.3]$, this precision enables $\gtrsim$\,3$\sigma$ separation across the band edges with joint data.

% ====================================================

\section{Pre-Registered Tests and Falsifiability}

\label{sec:echo}

We register three binary tests:

\noindent\textbf{CP-1 (tensor + feature):} Require $r<10^{-4}$ \emph{and} either (i) a horizon-scale cutoff with TE/EE coherence $\mathcal{C}_{k_c}>2.5$ using Eq.~\eqref{eq:coh} or (ii) a log-periodic ``echo'' detection in $\ln k$ with $f_{\ln k}\in[0.1,0.3]$ at $>3\sigma$ (Lomb--Scargle/FFT on deconvolved spectra with surrogate nulls). If $r\ge 10^{-4}$, recursion in bounce/brane channels is excluded.

\noindent\textbf{CP-2 (species tag):} $|f_{\rm NL}|\ge 1$ with sign distinguishing scenarios (small $f_{\rm NL}>0$ vs.\ small $f_{\rm NL}<0$), using SPHEREx/Euclid bispectra.

\noindent\textbf{CP-3 (entropy--$\Lambda$):} $|\Delta_S|<0.05$ and $\log B>2.5$ per Eq.~\eqref{eq:SLambda}; failure if $|\Delta_S|>0.10$ or $\log B<-2.5$.

% ====================================================

\section{Discussion and Outlook}

All ingredients are standard: canonical quantization, in--in correlators, CMB projection, and frequentist/Bayesian pipelines. The only novelty is a rigorously small, well-parameterized modification representing cross-cycle information flow. It appears observationally as a log-periodic feature with specific spacing, a tight low-$r$ expectation, and an entropy--$\Lambda$ attractor. Because these are pre-registered and binary, upcoming data can decisively confirm or exclude the scenario without ambiguity.

% ====================================================

\begin{thebibliography}{99}\setlength{\itemsep}{1pt}

\bibitem{Maldacena2003} J.~M.~Maldacena, \emph{Non-Gaussian features of primordial fluctuations in single field inflationary models}, JHEP \textbf{0305}, 013 (2003).

\bibitem{Weinberg2005} S.~Weinberg, \emph{Quantum contributions to cosmological correlations}, Phys.\ Rev.\ D \textbf{72}, 043514 (2005).

\bibitem{Chen2010} X.~Chen, \emph{Primordial Non-Gaussianities from Inflation Models}, Adv.\ Astron.\ \textbf{2010}, 638979 (2010).

\bibitem{Cheung2008} C.~Cheung \emph{et al.}, \emph{The Effective Field Theory of Inflation}, JHEP \textbf{03}, 014 (2008).

\bibitem{Planck2018} Planck Collaboration, \emph{Planck 2018 results. I. Overview}, A\&A \textbf{641}, A1 (2020).

\bibitem{Bousso1999} R.~Bousso, \emph{A Covariant Entropy Conjecture}, JHEP \textbf{07}, 004 (1999).

\bibitem{Khoury2001} J.~Khoury, B.~A.~Ovrut, P.~J.~Steinhardt, N.~Turok, \emph{The Ekpyrotic Universe}, Phys.\ Rev.\ D \textbf{64}, 123522 (2001).

\bibitem{SteinhardtTurok2002} P.~J.~Steinhardt, N.~Turok, \emph{A Cyclic Model of the Universe}, Science \textbf{296}, 1436–1439 (2002).

\end{thebibliography}

\end{document}


Previous
Previous

Gravity: An Entropic Fixed Point of RGE

Next
Next

Autopoietic Loops Can Form And “Live” In The Evolving Information Rich Landscapes Of LLM Context Windows :